Type: \(\displaystyle 4A^{1}_1\) (Dynkin type computed to be: \(\displaystyle 4A^{1}_1\))
Simple basis: 4 vectors: (1, 2, 2, 2, 2, 2, 2), (1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 2, 2, 2, 2), (0, 0, 0, 0, 1, 2, 2)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: A^{2}_1+2A^{1}_1
simple basis centralizer: 3 vectors: (0, 0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 1, 0, 0), (0, 0, 1, 0, 0, 0, 0)
Number of k-submodules of g: 36
Module decomposition, fundamental coords over k: \(\displaystyle 2V_{\omega_{1}+\omega_{2}+\omega_{4}}+2V_{\omega_{1}+\omega_{2}+\omega_{3}}+V_{2\omega_{4}}+4V_{\omega_{3}+\omega_{4}}+V_{2\omega_{3}}+V_{2\omega_{2}}+3V_{\omega_{1}+\omega_{2}}+V_{2\omega_{1}}+6V_{\omega_{4}}+6V_{\omega_{3}}+9V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, 0, -1)g_{-7}-\varepsilon_{7}
Module 21(0, 0, 0, 0, -1, 0, 0)(0, 0, 0, 0, -1, 0, 0)g_{-5}-\varepsilon_{5}+\varepsilon_{6}
Module 31(0, 0, -1, 0, 0, 0, 0)(0, 0, -1, 0, 0, 0, 0)g_{-3}-\varepsilon_{3}+\varepsilon_{4}
Module 43(-1, 0, 0, 0, 0, 0, 0)(1, 0, 0, 0, 0, 0, 0)g_{1}
h_{1}
g_{-1}
\varepsilon_{1}-\varepsilon_{2}
0
-\varepsilon_{1}+\varepsilon_{2}
Module 51(0, 0, 1, 0, 0, 0, 0)(0, 0, 1, 0, 0, 0, 0)g_{3}\varepsilon_{3}-\varepsilon_{4}
Module 61(0, 0, 0, 0, 1, 0, 0)(0, 0, 0, 0, 1, 0, 0)g_{5}\varepsilon_{5}-\varepsilon_{6}
Module 72(0, 0, 0, 0, -1, -1, -2)(0, 0, 0, 0, 0, 1, 0)g_{6}
g_{-24}
\varepsilon_{6}-\varepsilon_{7}
-\varepsilon_{5}-\varepsilon_{7}
Module 81(0, 0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 0, 1)g_{7}\varepsilon_{7}
Module 92(0, 0, 0, 0, 0, -1, -2)(0, 0, 0, 0, 1, 1, 0)g_{12}
g_{-19}
\varepsilon_{5}-\varepsilon_{7}
-\varepsilon_{6}-\varepsilon_{7}
Module 102(0, 0, 0, 0, -1, -1, -1)(0, 0, 0, 0, 0, 1, 1)g_{13}
g_{-18}
\varepsilon_{6}
-\varepsilon_{5}
Module 112(0, 0, -1, -1, -1, -1, -2)(0, 0, 0, 1, 1, 1, 0)g_{17}
g_{-32}
\varepsilon_{4}-\varepsilon_{7}
-\varepsilon_{3}-\varepsilon_{7}
Module 122(0, 0, 0, 0, 0, -1, -1)(0, 0, 0, 0, 1, 1, 1)g_{18}
g_{-13}
\varepsilon_{5}
-\varepsilon_{6}
Module 132(0, 0, 0, 0, -1, -1, 0)(0, 0, 0, 0, 0, 1, 2)g_{19}
g_{-12}
\varepsilon_{6}+\varepsilon_{7}
-\varepsilon_{5}+\varepsilon_{7}
Module 142(0, 0, 0, -1, -1, -1, -2)(0, 0, 1, 1, 1, 1, 0)g_{22}
g_{-28}
\varepsilon_{3}-\varepsilon_{7}
-\varepsilon_{4}-\varepsilon_{7}
Module 152(0, 0, -1, -1, -1, -1, -1)(0, 0, 0, 1, 1, 1, 1)g_{23}
g_{-27}
\varepsilon_{4}
-\varepsilon_{3}
Module 162(0, 0, 0, 0, 0, -1, 0)(0, 0, 0, 0, 1, 1, 2)g_{24}
g_{-6}
\varepsilon_{5}+\varepsilon_{7}
-\varepsilon_{6}+\varepsilon_{7}
Module 172(0, 0, 0, -1, -1, -1, -1)(0, 0, 1, 1, 1, 1, 1)g_{27}
g_{-23}
\varepsilon_{3}
-\varepsilon_{4}
Module 182(0, 0, -1, -1, -1, -1, 0)(0, 0, 0, 1, 1, 1, 2)g_{28}
g_{-22}
\varepsilon_{4}+\varepsilon_{7}
-\varepsilon_{3}+\varepsilon_{7}
Module 193(0, 0, 0, 0, -1, -2, -2)(0, 0, 0, 0, 1, 2, 2)g_{29}
2h_{7}+2h_{6}+h_{5}
g_{-29}
\varepsilon_{5}+\varepsilon_{6}
0
-\varepsilon_{5}-\varepsilon_{6}
Module 204(-1, -1, -1, -1, -1, -1, -2)(1, 1, 1, 1, 1, 1, 0)g_{30}
g_{-35}
g_{26}
g_{-38}
\varepsilon_{1}-\varepsilon_{7}
-\varepsilon_{2}-\varepsilon_{7}
\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{1}-\varepsilon_{7}
Module 212(0, 0, 0, -1, -1, -1, 0)(0, 0, 1, 1, 1, 1, 2)g_{32}
g_{-17}
\varepsilon_{3}+\varepsilon_{7}
-\varepsilon_{4}+\varepsilon_{7}
Module 224(0, 0, -1, -1, -2, -2, -2)(0, 0, 0, 1, 1, 2, 2)g_{33}
g_{-16}
g_{4}
g_{-40}
\varepsilon_{4}+\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{6}
\varepsilon_{4}-\varepsilon_{5}
-\varepsilon_{3}-\varepsilon_{5}
Module 234(-1, -1, -1, -1, -1, -1, -1)(1, 1, 1, 1, 1, 1, 1)g_{34}
g_{-31}
g_{31}
g_{-34}
\varepsilon_{1}
-\varepsilon_{2}
\varepsilon_{2}
-\varepsilon_{1}
Module 244(0, 0, 0, -1, -2, -2, -2)(0, 0, 1, 1, 1, 2, 2)g_{36}
g_{-11}
g_{10}
g_{-37}
\varepsilon_{3}+\varepsilon_{6}
-\varepsilon_{4}+\varepsilon_{6}
\varepsilon_{3}-\varepsilon_{5}
-\varepsilon_{4}-\varepsilon_{5}
Module 254(0, 0, -1, -1, -1, -2, -2)(0, 0, 0, 1, 2, 2, 2)g_{37}
g_{-10}
g_{11}
g_{-36}
\varepsilon_{4}+\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{5}
\varepsilon_{4}-\varepsilon_{6}
-\varepsilon_{3}-\varepsilon_{6}
Module 264(-1, -1, -1, -1, -1, -1, 0)(1, 1, 1, 1, 1, 1, 2)g_{38}
g_{-26}
g_{35}
g_{-30}
\varepsilon_{1}+\varepsilon_{7}
-\varepsilon_{2}+\varepsilon_{7}
\varepsilon_{2}+\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{7}
Module 274(0, 0, 0, -1, -1, -2, -2)(0, 0, 1, 1, 2, 2, 2)g_{40}
g_{-4}
g_{16}
g_{-33}
\varepsilon_{3}+\varepsilon_{5}
-\varepsilon_{4}+\varepsilon_{5}
\varepsilon_{3}-\varepsilon_{6}
-\varepsilon_{4}-\varepsilon_{6}
Module 288(-1, -1, -1, -1, -2, -2, -2)(1, 1, 1, 1, 1, 2, 2)g_{41}
g_{-21}
g_{39}
g_{20}
g_{-25}
g_{-42}
g_{15}
g_{-44}
\varepsilon_{1}+\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{6}
\varepsilon_{2}+\varepsilon_{6}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{5}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
Module 293(0, 0, -1, -2, -2, -2, -2)(0, 0, 1, 2, 2, 2, 2)g_{43}
2h_{7}+2h_{6}+2h_{5}+2h_{4}+h_{3}
g_{-43}
\varepsilon_{3}+\varepsilon_{4}
0
-\varepsilon_{3}-\varepsilon_{4}
Module 308(-1, -1, -1, -1, -1, -2, -2)(1, 1, 1, 1, 2, 2, 2)g_{44}
g_{-15}
g_{42}
g_{25}
g_{-20}
g_{-39}
g_{21}
g_{-41}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
\varepsilon_{2}+\varepsilon_{5}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{1}-\varepsilon_{6}
Module 318(-1, -1, -2, -2, -2, -2, -2)(1, 1, 1, 2, 2, 2, 2)g_{46}
g_{-9}
g_{45}
g_{8}
g_{-14}
g_{-47}
g_{2}
g_{-48}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{3}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 328(-1, -1, -1, -2, -2, -2, -2)(1, 1, 2, 2, 2, 2, 2)g_{48}
g_{-2}
g_{47}
g_{14}
g_{-8}
g_{-45}
g_{9}
g_{-46}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{4}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 333(-1, -2, -2, -2, -2, -2, -2)(1, 2, 2, 2, 2, 2, 2)g_{49}
2h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-49}
\varepsilon_{1}+\varepsilon_{2}
0
-\varepsilon_{1}-\varepsilon_{2}
Module 341(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{3}0
Module 351(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{5}0
Module 361(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{7}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 29
Heirs rejected due to not being maximally dominant: 2
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 2
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 2
Parabolically induced by 3A^{1}_1
Potential Dynkin type extensions: 5A^{1}_1,